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Observatlons of AGN Fulfill Multlple Scientific
Objectives

'How do black holes accrete matter, grow through cosmic time and*
influence their host galaxies? -

AGN are ideal background light sources for studying the
intergalactic medium (IGM), the circumgalactic medium (CGM), the
, "interstellar medium (ISM), and galactic halos. 2

Observations of well defined samples of AGN can be used to probe

foreground gas while doing all of the following simultaneously:
Reverberation mapping of the BLR in nearby AGN, and quantifying
the kinetic luminosity of outflows seen in absorption.

Survey and quantify outflows in intermediate redshift AGN, ascertain-
the shape of the continuum in the extreme ultraviolet, and study
radiation reprocessing near the black hole and accretion disk.

Observations of ~200 local AGN have defined a basic paradigm. We
‘need greatly éxpanded samples with real measurements to test it.



AGN and Feedback are Critical for Galaxy Evolution

Downsizing: AGN feedback limits Bower+2006
galaxy growth.

DiMatteo+2005

« Cole et al. (2001)
o Huang et al. (2003)
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Mg-0 : Feedback of ~5% of
L.4q COuples black hole
growth to galaxy growth,
leading to the correlation.

Color Evolution: Outflows can help AGN o~ Blue Clotd 8

move from the “Blue Cloud” across the . ‘Baldry+2004
“Green Valley” and onto the “Red Sequence”. 2 -2 21 R0 19 —18 -17 —16
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Why the Ultraviolet is important for AGN
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Radio Loud AGN Energy Output Peaks
Radio Quiet | in the Ultraviolet
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Spectral diagnostics are abundant
in the UV and EUV
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Science Challenges for Future Studies of AGN

‘How do inflows feed accretion onto the black hole?

' How do outflows influence the evolution of the host
galaxy?

¥

Both inflows and outflows m_ay%"’é related to the structure and
--+dynamics of the broad-line regifgn (BLR) in AGN. |

o
How does the accretion disk radiate the extracted

gravitational energy of the inflowing matter?

What are the demographics of black holes in AGN?



The B‘ottom Line

&

Fundamental progress requires an 8m-class observaton} with
9 ’ .

High-resolution UV spectroscopy

High spatial resolution integrﬁeld spectroscopy




Black Hole Masses via 2D Reverberation Mapping

« All black-hole masses in AGN at z >~0.1 are based on scalings from 1D
reverberation mapping of local AGN (~16 objects).

* . Local AGN are placed.on the Mg /o relation' using empirical scale factor, f.

Graham+11

Time delay:
t=(1+ Cos B)r/c

COS observations of
NGC 5548 require 1
orbit per day for 150

days. The campaign
* The scale factor, f, depends on the is tolerant to several

geometry and kinematics of the x 0 10 20 dropouts of 1-3 days.

broad-line gas. i
« Two-dimensional (i.e., velocity-

dependent) reverberation mapping

reveals the geometry and kinematics
of the BLR, giving “f".

e Result from simulated 150-day
campaign on- NGC 5548.
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2D Ground-Based Reverberation Maps Show Infall
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Would UV lines, Lya and C IV, show the expected outflow if the BLR
‘is also a, wmd from the accretlon disk?




Disk-wind Model for Outflows in AGN

&

’GJ, Shielding Gas

Gallagher & Everett (2007)

Wind terminal velocity depends on launch radius: Vi, ~ (Mgy/ Riunen)”

launch

X-ray luminous = thinner shield = farger R =  lower Vi,

launch



Measuring the Irripact of AGN Outflows

* Mechanically coupling 5% of the luminosity to the surrounding gas
is the threshold for effective feedback (Dimatteo+2005).

* The key quahtities we need to measure are
e The mass flux, M = 41 AQ r N, um, v

out

'~ The kinetic luminosity, L, = % M

out &

out\ig}:j,ti

* The SED plus photoionization rho&pl_ing gives us a density-
degendent distance through the ionization parameter:

L

b ion
E X n r2

* Density measurements enable us to then determine the distance‘, r.



A high-ionization outflow in FBQS J0209-0438
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Physical parameters of the outflow in FBQS J0209-0438

C:v=-380 kms"
B:v=-220 km s

Distance of outflow components
in FBQS J0209-0438
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High lonization EUV Lines in AGN Trace the Same
Gas as X-ray Observations in Low-redshift AGN
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High lonization EUV Lines in AGN Trace the Same
Gas as X-ray Observations in Low-redshift AGN
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AGN Spectral Energy Distribution
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Shang+11



The Physics of the Accretion Disk in the Extreme UV

Sensitivity down to 1000 A would allow direct observation of the
continuum in large numbers of AGN at redshifts from 0.5—3.0.

Existing ground-based observations (e.g., SDSS DR7) would give
fundamental parameters such as Mg, and L_4,.

Simultaneous ground-based observations would allow direct
correlation of the soft seed photons from the disk with the
Compton-scattered EUV.

Correlated lags yield the geometry of the scattering region.
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‘Jin; Done & Ward 2012
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- Direct Black Hole Mass Measurements to Cosmological
- Distances '

** Batcheldor & Koekemoer (2069) show that the resolution and low sky +
brightness afforded by the Lya emission line in the UV is more eff|C|ent 4
than 30-m ground-based telescopes in the IR.

* ,An 8-m space-based telescope can ‘observe a disk with the Lya surface
‘brightness of M87 to a limiting redshift of z=1.5. '

approdching

0.4 receding

-

HST (0.1” FWHM, ATLAS (10 mas FWHM, Velocity (1)
0.04"/pixel) 4 mas/pixel) (example from: A. M. Koekemoer, 2007)



Far Ultraviolet Observations of AGN
Science Requirements

Spectroscopy with time resolution of 1000 s

Field of View: arc seconds to arc minutes
Point source observations can use a single aperture
Black-hole masses require integral field spectroscopy over 17 x 1”7 °

Arc-minute fields could enable multi-object spectroscopy when probing
galactic environs

Physical / angular resolution(s) |

Most targets are point sources, howeﬂgw

I\/Ieasurmg black hole masses requlreJ;gular resolution of 10 mas @ 3000 A.
- Spectral resolution(s)
Required: R=15,000 / Desired: R=40, 000
Integral Field Unit required for black-hole mass measurements w/ R=1000
Wavelength band(s)

Required: 1150—3200 A / De5|red 912 3200 A
Sensitivity

Required: 1x1071° erg cm‘2 s~1 peryresolution element in 2000 s at 1150 A
Desired: 5x10716 erg cm=2 571 per resolution element in 2000 s at 912 A

&

..



The Path Forward: the Next 10 Years

Hubble is all we have for 5—10 years

v HST will obtain good spectra of a few dozen hi'gh-ionizatiori outflows
HST will characterize the continua of 100 moderate redshift QSOS

HST can do ~1 reverberation campalgn per cycle.
BONUS: Parallel imaging in adjacent ﬂﬁ’ds gives HDF-like depths.



The Path Forvtrard: Years 10—20

Without Hubble, they don’t look promising, but there is a ipath:

- Use Explorers for technology development & special applications
Dedicatedsmissions for monitoring/reverberation mapping
Improved mirror coatings for >80% r’éflectivity from 912—3200 A
Improved UV detectors with >50% DQE
Develop high throughput UV Intégr&field Spectrographs

> -

&

Make the 2" NRO telescope a UV/Optical optimized observatory
Moderate resolution UV Spectroscopy (R~20, OOO)
Wide-field imaging

At least as good, if not better than HST with |mproved technology
4



The Path ForWard: Years 20—30

" Further progress requires a multi-purpose 8m+ UV/O observatory +
providing both diffraction-limited imaging and UV/O spectroscopy.

All AGN with i > 19 are accessible to high-resolution UV spectroscopy
+ (This is several thousand QSOs.)

Density on the sky is sufficient for tomographic mapping of the enwrons
of nearby galaxies, including all AGN at z < 0.03.

IFU spectroscopy of outflows in em@smn will be possible, as well as
, absorption spectroscopy using background AGN. ;

IFU spectroscopy will enable direct black-hole mass measurements to |
eosmological distances using Lya emission in gaseous disks.

The sky density of accessible AGN enables paraIIeI' spectroscopy

when carrying out deep imaging surveys. !
o .

Well chosen samples of AGN simultaneously probe foregroun‘d gas
‘in the IGM, CGM, the ISM and galactic halos.



Anticipated Scientific Achievements

' The structure and kinematics of gas flows in AGN, from the scales:
that feed the accretion process to those that influence the host
galaxy via massive outflows. '

E

Understand the processes and structures that govern the radlatlve
" output of accretion dlsks |

&ﬂ”
Measure black hole masses dlrectlv and calibrate secondary
indicators.

f)emographic studies of QSO/Black Hole/Host evolution

Yield an alternative standard candle for cosmological studies (see

abstract by Benz & Vestergaard). .
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